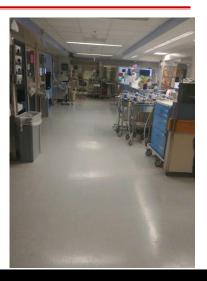
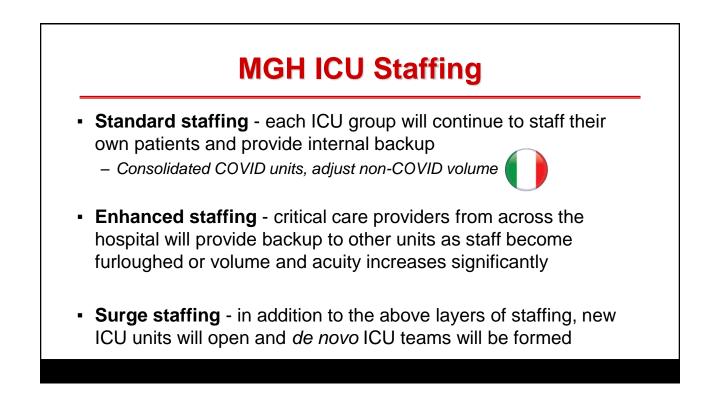
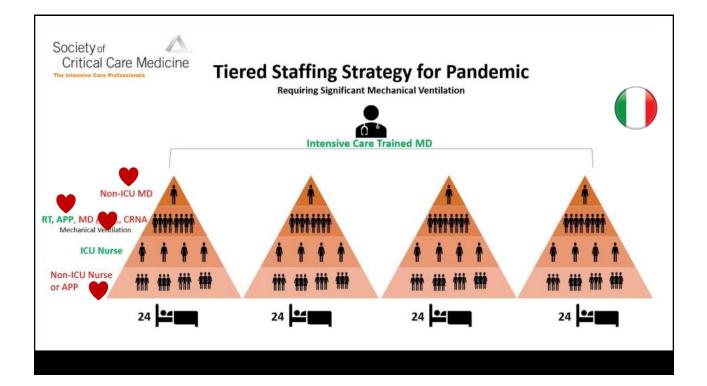


MGH Critical Care COVID Update

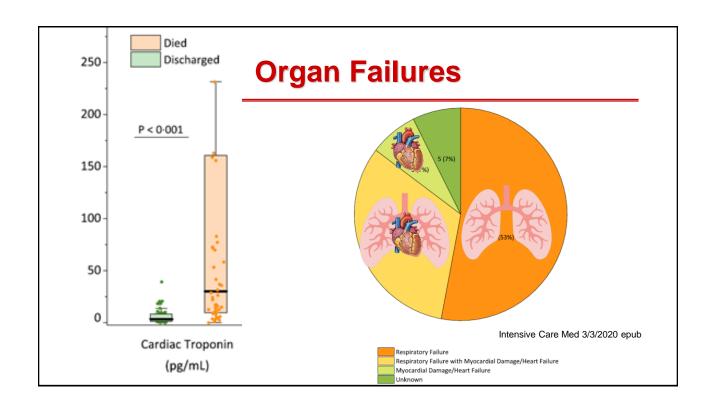
- Capacity Scenario
- MGH Critical Care Surge Outline
- Overview of COVID ICU Management
 - Focus on ARDS


Ellison 9: March 5, 2019, 855 AM




Ellison 9: March 23, 2020, 1021 AM

- Focused, quick rounds w/ RN
- Distancing
 - $-\downarrow$ team contact
 - $-\downarrow$ patient contact
- Preserve PPE
- Virtual teaching, RTL, work rounds
- Role of technology
- Coronary Care Unit

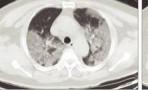


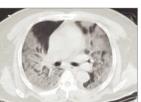
Management of Coronavirus Patients

Personal protection

- Watch videos and/or attend a session on PPE
- Get or update fit testing (*may not be available)
- OHS online form
- Strict isolation (contact/airborne/eye); observed don/doff
- Minimum necessary patient and HCW contacts
- Room entry logging
- Conserve PPE (batch testing, procedures, visits)
- Minimize unnecessary testing (CXR, labs, cardiac imaging)
- There is no emergency in a pandemic (EM literature)

COVID19 Update CODES and RAPID RESPONSES	
 <u>Only necessary staff</u> should enter the room for clinician safety and to conserve supplies. Police & Security and Clinical Supervisors will assist with crowd control.	
<u>CODE Responders entering the room - Essential code team</u> members and staff only:	
 <u>Protect yourself FIRST</u>! <u>Aerosol-generating procedures such as intubation are HIGHLY LIKELY to occur during a code</u> Use N95 + Contact + Eye protection for all CODES Staff who are NOT entering the room <u>DO NOT</u> need to don PPE 	
Rapid Response Responders:	
Protect yourself FIRST!	
 <u>PAUSE</u> and consult with staff before entering room to obtain patient status and determine if PPE is needed. 	

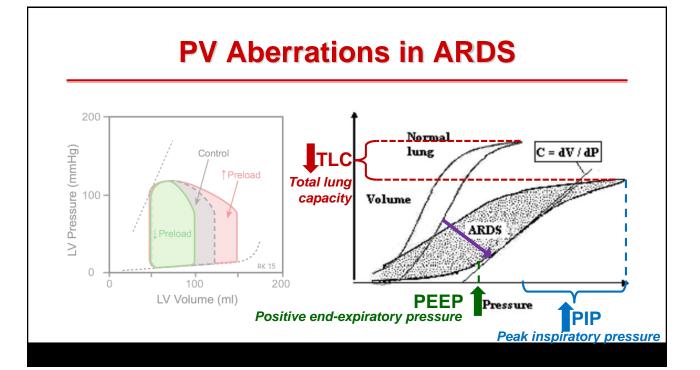



	Total (n=191)	Non-survivor (n=54)	Survivor (n=137)	p value
Outcomes				
Sepsis	112 (59%)	54 (100%)	58 (42%)	<0.0001
Respiratory failure	103 (54%)	53 (98%)	50 (36%)	<0.0001
ARDS	59 (31%)	50 (93%)	9 (7%)	<0.0001
Heart failure	44 (23%)	28 (52%)	16 (12%)	<0.0001
Septic shock	38 (20%)	38 (70%)	0	<0.0001
Coagulopathy	37 (19%)	27 (50%)	10 (7%)	<0.0001
Acute cardiac injury	33 (17%)	<u>32 (59%)</u>	1 (1%)	<0.0001
Acute kidney injury	28 (15%)	27 (50%)	1 (1%)	<0.0001
Secondary infection	28 (15%)	27 (50%)	1 (1%)	<0.0001
Hypoproteinaemia	22 (12%)	20 (37%)	2 (1%)	<0.0001
Acidosis	17 (9%)	16 (30%)	1 (1%)	<0.0001

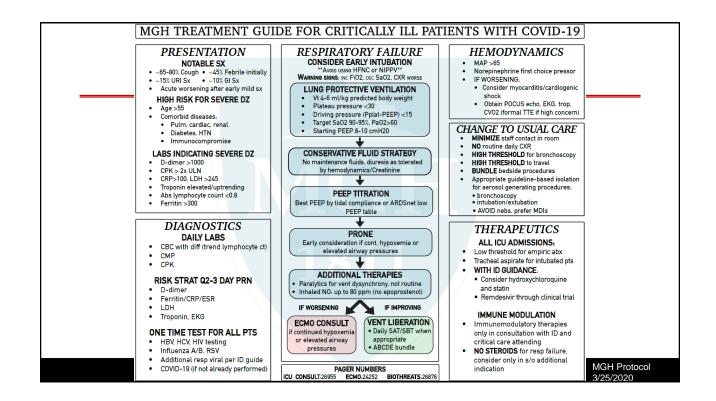
	Mild	Moderate	Severe	Critical
Symptoms	+/-	+	++	++
Chest Imaging	(-)	Lung inflammation	Lung inflammation	Lung inflammation
Syndrome		 URI symptoms 	 Dyspnea Tachypnea Hypoxemia P/F < 300 	 Ventilator Shock Other organ failures
hsTnl, CPK,	D-dimer, seru	e, lymphopenia, leucoc m ferritin, IL-6, prothrom ociated with death. ↓AL	bin time, creatinine	, and

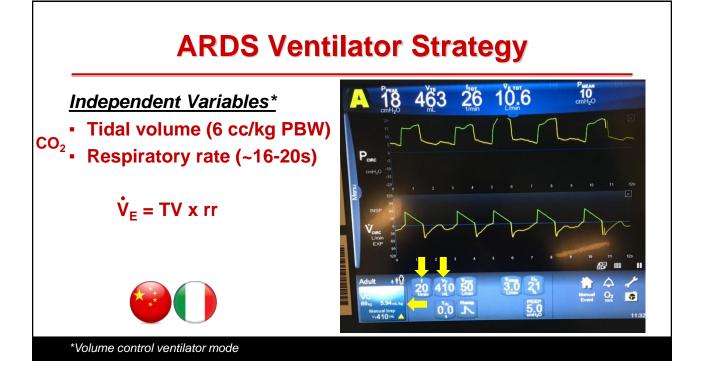
Berlin Criteria: Acute Respiratory Distress Syndrome and COVID

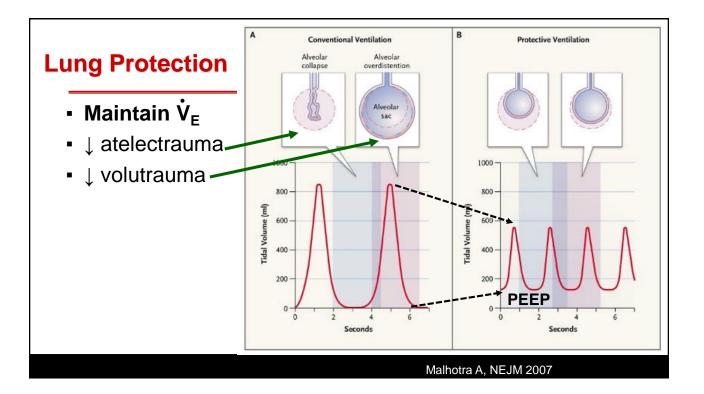
Timing	Acute (≤7d of insult)
Imaging	Bilateral pulmonary infiltrates



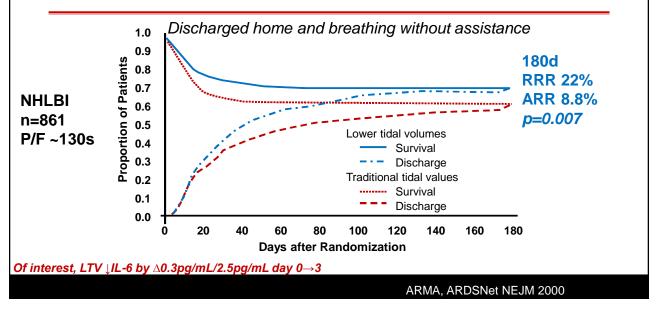
Et	iology	Non-cardiogenic		
O)	xygenation	Marked hypoxemia	<u>Reference</u>	COVID19 ICU
	Pao ₂ , mm Hg		83-108	68 (56-89)
	Pao ₂ :Fio ₂ , mr	n Hg	400-500	136 (103-234)


Normal Alveolus Injured Alveolus during the Acute Phase Pathophysiology Alveolar air spac rotein-rich edema fluid Sloughing of bronchial epithelium Necrotic or apoptotic type I cell Type I cell Inflammation* Epithelia Red cell basement membrane Activated Vascular permeability / Interstitium Туре Intact type II cel Oxidants. interstitial edema* PAF ropha Denuded ent membrane Surfactant dysfunction Migrating neutrophil Widened Alveolar edema interstitiun Mucous plugging Endothelia cell Histologically: Pulmonary consolidation, fibrinous Endothelia exudates (macrophages, giant cells), hyalinemembrane leutrophi membranes, desquamation of bronchial mucosa, focal hemorrhages, mucous plugs Red cell Swollen, injured endothelial cells Fibroblast utrophil NEJM 2000 Fibroblast Lancet Res Med 2018;6:691. JAMA IM 3/13/2020

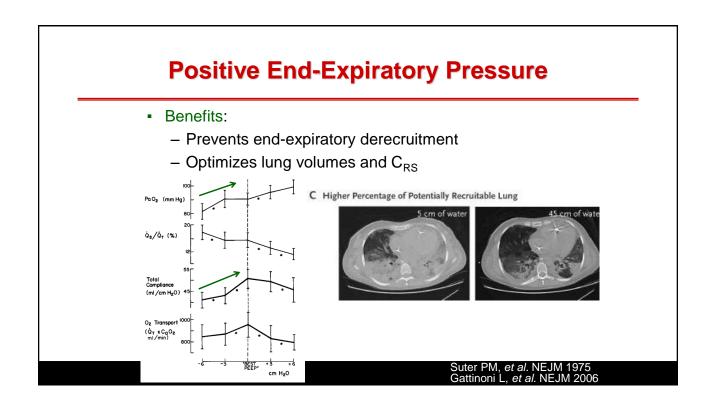

AJRCCM 2017:195:331

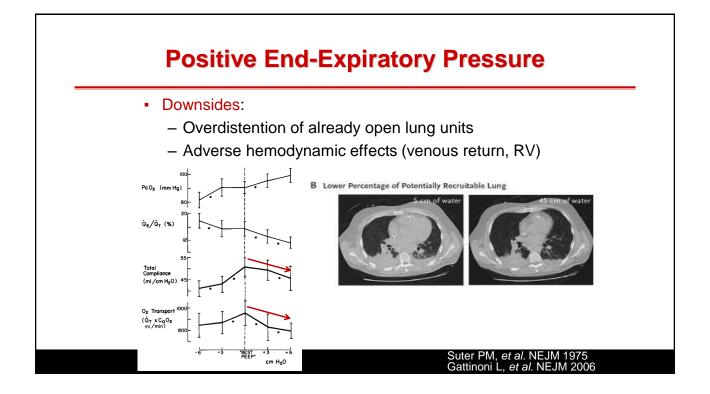


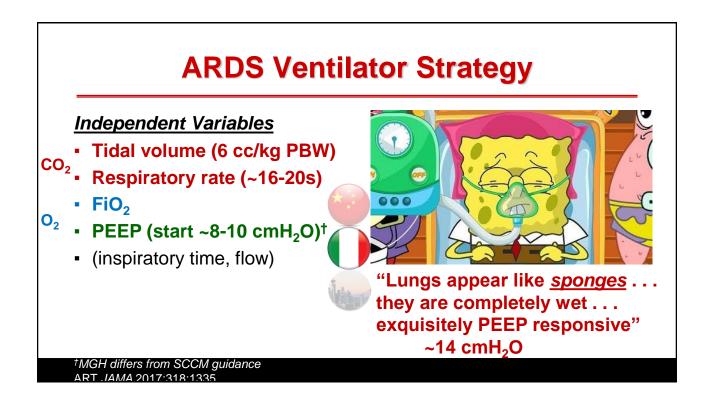
Ventilator Goal • Support oxygenation when patient cannot while • Minimizing ventilator induced/associated harms


Intervention	Reference	Study phase	Study population ^A	Results
Lung-protective ventilation	96	Phase III	ARDS ($N = 53$)	Decrease in mortality
Lung-protective ventilation	97	Phase III	ARDS $(N = 33)$ ARDS $(N = 861)$	Decrease in mortality
Lung-protective ventilation	98	Phase III	ARDS $(N = 103)$	Decrease in mortality
High PEEP	108	Phase III	ARDS (N = 549)	No difference in mortality
High PEEP	100	Phase III	ARDS (N = 345)	No difference in mortality
High PEEP	110	Phase III	ARDS (N = 382)	No difference in mortality
High-frequency ventilation	116	Phase II	ARDS (N = 382) ARDS (N = 148)	No difference in mortality
Prone position	110	Phase III	ALL and ARDS in	No difference in mortality
Frome position		Flidse III	children ($N = 102$)	No unerence in monality
Prone position	112	Phase III	ARDS ($N = 342$)	No difference in mortality
Neuromuscular blockade	113	Phase III	ARDS $(N = 340)$	Decrease in mortality
Esophageal pressure to adjust PEEP	110	Phase II	ARDS ($N = 61$)	Improved oxygenation
Surfactant	125	Phase III	ARDS (N = 448)	No difference in mortality
Methylprednisolone	126	Phase III	ARDS (N = 99)	No difference in mortality
Methylprednisolone				rease in mortality, but small stud
Methylprednisolone	horan	ioc ha	ave durabl	difference in mortality
Methylprednisolone	nciap	103 110		Juction in duration of mechanical
	red er	4		entilation, but major limitations
	rea ou	τςοπ	e in ARDS	
Liposomal prostaglandin E				difference in mortality for results
Antioxidants				difference in mortality
Nitric oxide				difference in mortality
β ₂ -Agonist (aerosolized)	. ((luna	v nrot	la ativa "	difference in mortality
β ₂ -Agonist (intravenous)	y nung	i prot	tective"	difference in mortality
w-3 Eatty acid supplement				difference in mortality
Pulmonary artery versus c	tilator	strate	aies	difference in mortality
Fluid-conservative versus t		<u> </u>	<u></u>	e ventilator-free days with
	445		1000 (11 00)	nuid-conservative therapy
Extracorporeal membrane oxygenation	115	Phase III	ARDS (<i>N</i> = 90)	Decrease in mortality, but results not conclusive
APC	134	Phase III	Nonseptic ARDS ($N = 75$)	No difference in mortality
APC	134			No difference in mortality
GM-CSF	133	Phase III Phase II	Sepsis ($N = 1,697$) ARDS ($N = 130$)	No difference in mortality No difference in mortality

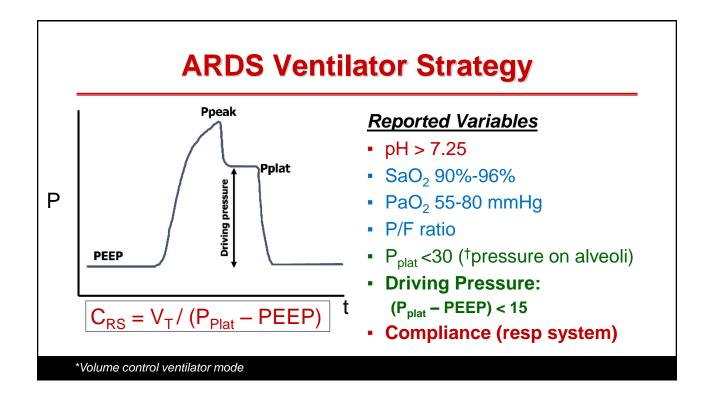
ARDSNet: Low Tidal Volume (6 v. 12 cc/kg)

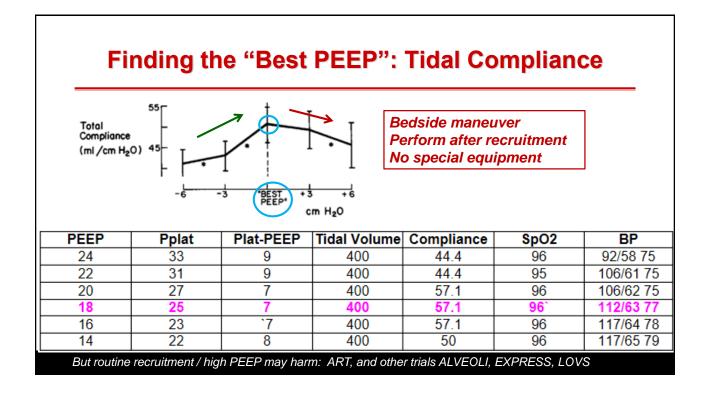



	HEIGHT	PBW	4 m l	5 m l	6 m l	7 m l	8 m I	í	HEIGHT	PBW	4 m l	5 m l	6 m l	7 m l	8 m
	4'0"(48)	17.9	72	90	107	125	143		4' 0" (48)	22.4	90	112	134	157	179
	4' 1" (49) 4' 2" (50)	20.2	81 90	101	121	141	162		4' 1" (49)	24.7	99	124	148	173	198
	4' 2' (50)	22.5 24.8	90	113 124	135 149	158 174	180 198		4' 2" (50)	27	108	135	162	189	216
	4' 4" (52)	24.0	108	136	163	190	217		4' 3" (51) 4' 4" (52)	29.3	117	147	176	205	234
Tidal Volume	4' 5" (53)	29.4	118	147	176	206	235		4' 4'' (52) 4' 5'' (53)	31.6 33.9	126 136	158 170	190 203	221 237	253 271
	4' 6" (54)	31.7	127	159	190	222	254		4' 6" (54)	36.2	145	181	217	253	290
	4'7" (55)	34	136	170	204	238	272		4' 7" (55)	38.5	154	193	231	270	308
	4' 8" (56)	36.3	145	182	218	254	290		4' 8" (56)	40.8	163	204	245	286	326
	4' 9" (57)	38.6	154 164	193	232 245	270	309		4'9"(57)	43.1	172	216	259	302	345
	4'10" (58) 4'11" (59)	40.9 43.2	164	205 216	245	286 302	327 346		4'10" (58)	45.4	182	227	272	318	363
	5' 0" (60)	45.2	182	218	273	319	364		4' 11" (59)	47.7	191 200	239	286 300	334 350	382
• PBW	5' 1" (61)	47.8	191	239	287	335	382		5'0"(60) 5'1"(61)	50 52,3	200	250 262	300	350	400
	5' 2" (62)	50.1	200	251	301	351	401		5' 2" (62)	54.6	218	273	328	382	437
	5' 3" (63)	52.4	210	262	314	367	419		5' 3" (63)	56.9	228	285	341	398	455
Inchas to ka	5' 4" (64)	54.7	219	274	328	383	438		5' 4" (64)	59.2	237	296	355	414	474
Inches to kg	5' 5" (65)	57	228	285	342	399	456		5' 5" (65)	61.5	246	308	369	431	492
	5' 6" (66)	59.3	237	297	356	415	474		5'6"(66)	63.8	255	319	383	447	510
	5' 7" (67) 5' 8" (68)	61.6 63.9	246 256	308 320	370 383	431 447	493 511		5' 7" (67)	66.1	264	331	397	463	529
	5' 9" (69)	66.2	265	320	383	447	530		5' 8" (68)	68.4	274	342	410	479	547
♀ 45.5+2.3(H-60)	5' 10" (70)	68.5	274	343	411	480	548		5' 9" (69) 5' 10" (70)	70.7	283 292	354 365	424 438	495 511	566 584
T	5' 11" (71)	70.8	283	354	425	496	566		5' 11" (71)	75.3	301	377	452	527	602
A	6' 0" (72)	73.1	292	366	439	512	585		6' 0" (72)	77.6	310	388	466	543	621
	6' 1" (73)	75.4	302	377	452	528	603		6' 1" (73)	79.9	320	400	479	559	639
♂ 50+2.3(H-60)	6' 2" (74)	77.7	311	389	466	544	622		6' 2" (74)	82.2	329	411	493	575	658
\odot ()	6' 3" (75)	80	320	400	480	560	640		6' 3" (75)	84.5	338	423	507	592	676
	6' 4" (76) 6' 5" (77)	82.3 84.6	329 338	412 423	494 508	576 592	658 677		6' 4" (76)	86.8	347 356	434 446	521	608 624	694
	6' 6" (78)	86.9	348	425	508	608	695		6' 5" (77) 6' 6" (78)	89.1 91.4	355	446	535 548	640	713
	6' 7" (79)	89.2	357	446	535	624	714		6' 7" (79)	93.7	375	469	562	656	750
	6' 8" (80)	91.5	366	458	549	641	732		6' 8" (80)	96	384	480	576	672	768
	6' 9" (81)	93.8	375	469	563	657	750		6' 9" (81)	98.3	393	492	590	688	786
	6'10" (82)	96.1	384	481	577	673	769		6'10" (82)	100.6	402	503	604	704	805
	6'11" (83)	98.4	394	492	590	689	787		6'11" (83)	102.9	412	515	617	720	823
L. L	7' 0" (84)	100.7	403	504	604	705	806		7'0"(84)	105.2	421	526	631	736	842
	PBW a	and	Ti	dal					PBW	and	ł Ti	dal			
										and		<u>.</u>			
	Volum	e fo	or F	em	nale	es			Volun	ne f	or I	Mal	es		
									, oran		.		00		


ARDS Ventilator Strategy 26 10.6 463 Independent Variables 18

- Tidal volume (6 cc/kg PBW)
- CO₂ Respiratory rate (~16-20s)
 - FiO₂
- **O**₂ PEEP .
 - (inspiratory time, flow)

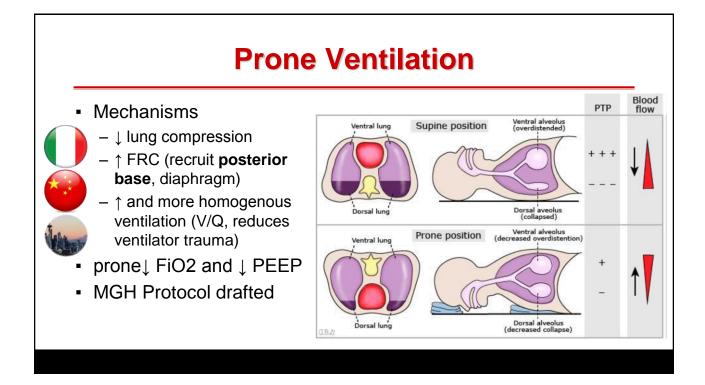

ARDS Ventilator Strategy

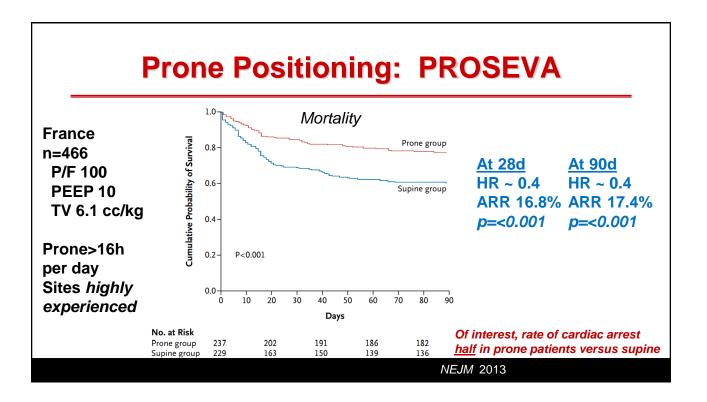

Independent Variables

- Tidal volume (6 cc/kg PBW)
- CO₂ Respiratory rate (~16-20s)
 - FiO₂
- PEEP (start ~8-10 cmH₂O)
 - (inspiratory time, flow)

Reported Variables

- pH > 7.25
- SaO₂ 90%-96%
- PaO₂ 55-80 mmHg
- P/F ratio
- P_{plat} <30 ([†]pressure on alveoli)
- Driving Pressure: (P_{plat} – PEEP) < 15
- Compliance (resp system)




Fluid Management Principles

- Goal to ↓ EVLW*
- Conservative fluid strategy improves
 - Ventilator free days (+2.5)
 - Mechanical vent days (-2.8)
 - ICU free days (+2)

- Fluids
 - Avoid maintenance fluids
 - Limit bolus (crystalloid) to shock
 - Assess fluid responsiveness
- Consider diuretic to normalize CVP until off ventilator
 - Stop based on ↑Cr
- Avoid RIJ access (ECMO)

FACTT NEJM 2006; SCCM

Proning: Logistics and Contraindications

Contraindications

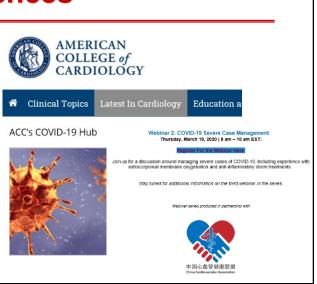
- Unstable spine, pelvis, or fractures
- Pregnancy (2nd/3rd trimester)
- Open chest/abdomen
- Elevated ICP
- Hemoptysis
- Facial trauma
- Vascular/CVVH lines, NGT are <u>not</u>
- Arterial line before prone
- ? Paralytic

Complications

- ETT dislodged/obstructed
- Corneal abrasion, facial edema
- Atypical sites of pressure ulcers
- EKG leads on back
- Brachial plexopathy
- Hemodynamics (*less* hypotension in PROSEVA)

Recap: ARDS

- Early intubation
- Lung protective ventilation
- Prone ventilation
- Nitric oxide (iNO)
- Conservative fluid strategy
 ± NMB → Daily SAT


- Steroids*
- ? Anti-retrovirals
- ? Early antibiotics
- ? Anti-inflammatories, statins
- ? ECMO

20/20 Vision on COVID and ARDS

- Protect yourself and team
- Protect the patient (lung protection)

References

- PHS/MGH Communication with Italian and Chinese ICUs
- MGH/PHS protocols
 - Critical Care
 - ID (CHANT)
 - Proning Protocol
- PCCM (Hibbert, Hardin, etc) and HCICU intensivists/RRT
- ACC, JAMA, SCCM, ATS, ARDSnet, CDC, CCDC

