POLICY STATEMENT Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of all Children

DEDICATED TO THE HEALTH OF ALL CHILDREN"

Guidance for Structuring a Pediatric Intermediate Care Unit

Nicholas A. Ettinger, MD, PhD, CMQ, CPPS, FAAP,^a Vanessa L. Hill, MD, FAAP,^b Christiana M. Russ, MD, FAAP,^{c,d} Katherine J. Rakoczy, MD, FAAP,^e Mary E. Fallat, MD, FAAP,^f Tiffany N. Wright, MD,^f Karen Choong, MB, BCh, MSc, FRCPC,^g Michael S.D. Agus, MD, FAAP,^d Benson Hsu, MD, MBA, FAAP,^h SECTION ON CRITICAL CARE, COMMITTEE ON HOSPITAL CARE, SECTION ON SURGERY

The purpose of this policy statement is to update the 2004 American Academy of Pediatrics clinical report and provide enhanced guidance for institutions, administrators, and providers in the development and operation of a pediatric intermediate care unit (IMCU). Since 2004, there have been significant advances in pediatric medical, surgical, and critical care that have resulted in an evolution in the acuity and complexity of children potentially requiring IMCU admission. A group of 9 clinical experts in pediatric critical care, hospital medicine, intermediate care, and surgery developed a consensus on priority topics requiring updates, reviewed the relevant evidence, and, through a series of virtual meetings, developed the document. The intended audience of this policy statement is broad and includes pediatric critical care professionals, pediatric hospitalists, pediatric surgeons, other pediatric medical and surgical subspecialists, general pediatricians, nurses, social workers, care coordinators, hospital administrators, health care funders, and policymakers, primarily in resource-rich settings. Key priority topics were delineation of core principles for an IMCU, clarification of target populations, staffing recommendations, and payment.

BACKGROUND INFORMATION

To clarify the type of unit that should be subject to these recommendations, the term intermediate care unit (IMCU) will be used. "Intermediate care is provided in acute care hospitals to a patient population with a severity of illness that does not require intensive care but does require greater services than those provided by routine inpatient general pediatric care."¹ IMCUs have also been defined as high-dependency, progressive, or step-up units that provide close observation, monitoring, and therapies to children who are, or have a significant potential to be, physiologically unstable and for whom care

abstract

^aSection of Critical Care, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas; ^bSection of Pediatric Hospital Medicine, Department of Pediatrics, Baylor College of Medicine/ The Children's Hospital of San Antonio. San Antonio. Texas: ^cIntermediate Care Program, ^dDivision of Medical Critical Care, Boston Children's Hospital, Boston, Massachusetts; ^eSection of Pediatric Hospital Medicine, Department of Pediatrics. Tuft's Children's Hospital. Boston. Massachusetts: ¹Division of Pediatric Surgery, Hiram C. Polk Jr Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky; ^gDivision of Critical Care, Department of Pediatrics, McMaster University, Ontario, Canada; and ^hDivision of Critical Care, Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota

This document is copyrighted and is property of the American Academy of Pediatrics and its board of directors. All authors have filed conflict of interest statements with the American Academy of Pediatrics. Any conflicts have been resolved through a process approved by the board of directors. The American Academy of Pediatrics has neither solicited nor accepted any commercial involvement in the development of the content of this publication. Policy statements from the American Academy of Pediatrics benefit from the expertise and resources of liaisons and internal (AAP) and external reviewers. However, policy statements from the American Academy of Pediatrics may not reflect the views of the liaisons or the organizations or government agencies that they represent.

The guidance in this statement does not indicate an exclusive course of treatment or serve as a standard of medical care. Variations that take individual circumstances into account may be appropriate. All policy statements from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, revised, or retired at or before that time.

DOI: https://doi.org/10.1542/peds.2022-057009

Address correspondence to: Nicholas A. Ettinger, MD, PhD, FAAP. Email: nicholas.ettinger@bcm.edu.

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). Copyright © 2022 by the American Academy of Pediatrics

To cite: Ettinger NA, Hill VL, Russ CM, et al; AAP Section on Critical Care, Committee on Hospital Care, Section on Surgery. Guidance for Structuring a Pediatric Intermediate Care Unit. Pediatrics. 2022;149(5):e2022057009

'exas (

Downloaded from http://publications.aap.org/pediatrics/article-pdf/doi/10.1542/peds.2022-057009/1279046/peds 202205700

is beyond the capability of a general pediatric floor.^{2,3} IMCUs may also function as step-down units, primarily caring for patients during recovery from critical illness or surgical intervention that required ICU admission. This policy statement acknowledges that many facilities may not have an IMCU. In such facilities without an IMCU, many of the patient populations discussed in this document will likely be cared for in a PICU rather than on the general pediatric floor.

STATEMENT OF PROBLEM

The purpose of this policy statement is to update and replace the American Academy of Pediatrics (AAP) and Society of Critical Care Medicine's 2004 clinical report "Admission and Discharge Guidelines for the Pediatric Patient Requiring Intermediate Care,"¹ and to serve as a follow-up publication filling a gap regarding the administration of Intermediate Care Units that was identified in the 2019 publication "Criteria for Critical Care of Infants and Children: PICU Admission, Discharge, and Triage Practice Statement and Levels of Care Guidance."^{4,5} Since 2004, there have been significant advances in pediatric medical, surgical, and critical care that have resulted in an evolution in the acuity and complexity of children requiring hospital admission.

NEW INFORMATION

2

Literature from studies in adults supports that IMCUs may allow for better ICU bed utilization,^{6,7} improve patient flow,⁸ decrease costs,⁹ and improve general patient outcomes on the basis of the lower ICU mortality rate, presumably because of reductions in ICU staff workload.¹⁰ However, the evidence on IMCUs for adults is sparse, difficult to interpret, and challenged by significant heterogeneity in unit structure and function.¹¹ Research evaluating pediatric IMCUs is even more limited in volume. A multiinstitutional clinical PICU database study revealed that 36 of 108 North American PICUs had an IMCU. In that study, IMCUs did not significantly decrease PICU length of stay (LOS), and admission to the IMCU was associated with a time delay of 3.1 hours once medically cleared to transfer out of the PICU.¹² Because pediatric IMCUs are financially most viable in hospitals that function with higher bed occupancy rates overall, it is difficult to generalize these results. In addition, as noted by Geneslaw et al, "having an IMCU might be advantageous for other PICU, hospital, or patient-centered metrics such as costs, throughput for other hospital locations, or patient/family comfort/ satisfaction,"¹² none of which have yet been studied comprehensively in pediatrics.

In a review of adult IMCUs, 21% were staffed by intensivists, and the remaining 79% were staffed by hospitalists, of which 43% consulted with intensivists, and 36% had no intensivist involvement.¹³ Two adult studies suggest that IMCUs staffed by hospitalists showed a beneficial impact on in-hospital mortality and may decrease LOS.^{14,15} No similar data are available in pediatrics. Two single-institution reports on pediatric IMCUs indicate they were staffed primarily by pediatric hospitalists.^{16,17}

Nurse-to-patient ratios are integral to the function of IMCUs. In the United Kingdom's National Health Services, a set of recommendations by a Royal College of Pediatrics and Child Health working group in 2014 redefined "high-dependency care" into National Health Services level 1 and level 2 critical care,² with different interventions corresponding to each level of critical care (https://www. kingsfund.org.uk/publications/ critical-care-services-nhs#differenttypes-and-levels). The importance of differentiating these levels was affirmed by follow-up observational research demonstrating both groups consumed higher staff resources,¹⁸ with nurse-to-patient ratios of 1:2 for level 1 critical care and 1:1 for level 2 critical care. In the United States, IMCU nurse-to-patient ratios of 1:2 to 1:2.5 have been reported in pediatric and adult literature.^{11,16,17}

METHODS

A group of 9 clinical experts in pediatric critical care, pediatric hospital medicine, intermediate care, and pediatric surgery was tasked by the AAP with reviewing the 2004 clinical report in light of the 2019 AAP PICU admission guidelines, developing consensus on priority topics requiring updating or clarifying, and reviewing any relevant evidence on these topics to inform the recommendations. Key priority topics were core unit principles, target populations, staffing recommendations, and payment.

For this policy update, the authors reviewed PubMed, Medline, and Embase for relevant publications from 2004 to the present. Publications of observational studies, clinical trials, implementation studies, and practice guidelines focused on IMCUs admitting patients younger than 18 years were included. Members of the working group were assigned to review citations and abstracts relevant to their designated topic content areas. Where specific pediatric evidence was not available, adult studies were reviewed but did not directly inform final policy recommendations. The available evidence on each of the relevant topic areas was summarized, the working group reviewed the

document electronically, and the working group agreed on the practice recommendations through a series of 5 virtual meetings. In keeping with AAP policy,¹⁹ and, because of the paucity of pediatric evidence, where the recommendation is rationalized by some evidence in critically ill patients and there was strong group consensus, the word "must" is used; where evidence was not available but consensus on the recommendation was strong based on experience and expert opinion, the words "should" or "may" are used.

With this document, the authors aim to provide enhanced guidance for institutions in the development and operation of a pediatric IMCU. The 2004 AAP clinical report¹ was an organ system-based list of admission criteria as well as a list of specific medical criteria to be "safe" for transfer to a lower-acuity unit or to discharge home. To provide more helpful direction for institutions, administrators, and providers, this policy update has included delineations by organ system and has also added focus on several specific areas: recommendations for core operating principles in the development of an IMCU, recommendations for patient population-based admission criteria to an IMCU, recommendations related to IMCU staffing, and recommendations regarding financial payment for IMCU-level care.

RECOMMENDATIONS

1. Core Operating Principles When Considering the Development of a Pediatric IMCU

(a) Hospitals or health systems should design triage guidelines to guide admission to the IMCU (vs admission to the general pediatric floor or to the PICU). (b) Policies and procedures should clearly delineate ongoing assessment of patients and what interventions may be performed in the IMCU versus when PICU-level care is required. (c) There should be clear thresholds and efficient processes for rapid transfer to a PICU. Rationale: IMCUs may be beneficial to the functioning of pediatric hospitals with a tertiary or quaternary PICU, as defined by the 2019 PICU admission guideline,⁵ and should only be established in hospitals without a PICU in the same institution with caution, extensive planning, and great care. All IMCUs should have a wellestablished relationship. administratively and geographically, with a PICU, including delineating a clear plan to cover routine and emergency airway issues, policies and procedures for consultation with a pediatric intensivist or neonatologist when medically indicated, and clear triggers to prompt PICU consultation in patients not responding to therapies or whose disease state is worsening.

2. Target IMCU Patient Populations

Patient populations well-served by an IMCU model may include children with acute critical illness, children with complex chronic disease, and a range of pediatric surgical patients.

(a) In institutions with an IMCU, children with acute critical illness and a low risk of mortality contingent on aggressive management should be admitted to an IMCU.

Rationale: Children and adolescents with acute critical illness and a low risk of mortality contingent on aggressive management who do not require invasive technologies for that care should be well served in an IMCU. Specific potential examples are listed in Table 1. To cohort patients with some of these diagnoses into an IMCU may allow for more effective quality improvement initiatives and protocol development for improving outcomes. In addition, some patients with complex disorders, such as those with inborn errors of metabolism, may have recurrent decompensations that do not require invasive monitoring or care and may have highly individualized protocols for management. These children may also benefit from placement in an IMCU that is able to care for them throughout such episodes, avoiding multiple transfers between the general pediatric floor and PICU.

Noninvasive positive pressure ventilation (NIPPV) is increasingly used to manage acute respiratory failure in typically developing children.²⁰ Therefore, there may be a more prominent role for IMCUs in managing the subgroup of patients with acute respiratory failure that is at low risk of requiring intubation. Similar protocols have been successfully implemented in adult IMCUs.²¹ At 1 tertiary pediatric hospital, a guideline for initiation of NIPPV for acute respiratory failure in the IMCU enabled 69% of those patients to remain in the IMCU.¹⁶ The guideline was predicated on appropriate nurse and respiratory therapy staffing with strong interdisciplinary team communication, processes for frequent reevaluation, and clear criteria for transfer to the PICU. Evidence in adult literature suggests that IMCUs integrated with, or adjacent to, ICUs may manage higher-acuity patients more readily.¹¹

(b) In institutions with an IMCU, children with medical complexity (CMC) admitted with acute on chronic illness who are inappropriate for a regular floor admission should be admitted to an IMCU. The IMCU may be their "inpatient medical home," unless the severity of presentation or trajectory of illness necessitates PICU admission.

Downloaded from http://publications.aap.org/pediatrics/article-pdf/doi/10.1542/peds.2022-057009/1279046/peds_2022057009.pdf

	IMCU Care Element Likely Not	
Organ System	Available on a General Pediatric Floor	
Respiratory Patients with acute or acute-on-chronic respiratory failure	Need for noninvasive positive	
with a low risk of requiring intubation (eg, asthma, bronchiolitis, croup, obstructive sleep apnea, pneumonia, tracheitis)	pressure ventilation	
Patients requiring work-up of apnea	Presence of a tracheostomy +/- ventilator	
Patients with impaired airway clearance requiring frequent suctioning	Close (q2-q4h) cardiorespiratory monitoring $F_i 0_2 \ge 50\%$ Requiring frequent (q2-q4h) respiratory treatments/	
	nebulizations/suctioning	
Cardiovascular		
Patients with non-life-threatening cardiac dysrhythmias without need for cardioversion Patients with non-life-threatening cardiovascular disease	Close (q2-q4h) cardiorespiratory monitoring Low dose inotropic or	
requiring low dose intravenous inotropic or vasodilator therapy and without need for frequent titration (eg, chronic heart failure on long term milrinone therapy)	vasodilator therapy without need for frequent titration	
Patients recovering from acute cardiac surgery or cardiac catheterization with low probability of postoperative hemodynamic or respiratory compromise		
Neurologic		
Patients with seizures/epilepsy (acute or chronic) who are responsive to therapy, who may require short term electroencephalographic monitoring and who require continuous cardiorespiratory monitoring, but with low risk for cardiac arrest or intubation and/or low risk for requiring continuous electroencephalographic	Close (q2–q4h) neurologic and cardiorespiratory monitoring	
monitoring Patients with acute encephalopathy who require close cardiorespiratory monitoring but with low risk for	Need for noninvasive positive pressure ventilation	
cerebral herniation, cardiac arrest, or intubation		
Patients with acute inflammation/infection of the central nervous system but with low risk for cerebral herniation, cardiac arrest, or intubation Patients with chronic neuro-muscular disorders requiring	Short term electroencephalographic monitoring	
respiratory support at or above baseline but with low risk for requiring intubation.		
Hematologic/Oncologic		
Patients with severe anemia requiring acute transfusions without serious hemodynamic compromise	Close (q2–q4h) neurologic and cardiorespiratory monitoring	
Oncologic patients with anemia, thrombocytopenia, and/or neutropenia at risk for or experiencing tumor lysis syndrome but with appropriate, stable renal function and with low risk for requiring emergent dialysis	Frequent laboratory monitoring $(\ge q2h)$	
Oncologic patients with chronic chemotherapy-related heart failure requiring low-dose inotropic or vasodilator therapy with low risk for further cardiorespiratory compromise and without need for frequent titration	Low dose inotropic or vasodilator therapy without need for frequent titration	
Endocrine/Metabolic		
Patients with mild or moderate diabetic ketoacidosis requiring continuous insulin infusions but without acute severe encephalopathy and with low risk of clinically significant cerebral edema	Continuous insulin infusions and frequent glucose checks	

TABLE 1 Examples (by Organ System) of Pediatric Patient Populations With Acute Critical Illness and a Low Risk of Mortality Potentially Suitable for an IMCU
 (c) IMCUs should have care managers and social workers well versed in the practical medical complexities of home care for families with CMC.

Rationale: CMC are children who meet one or more of the following characteristic patterns: (1) substantial health care needs, (2) chronic medical conditions, (3) significant functional limitations, and (4) high projected health care utilization.²² These children are often cared for with an episode-based model of care²³ because of their technology dependence and/or complexity of care when ill. CMC, particularly those dependent on technology, may require more nursing or respiratory therapy care at baseline than is available on general pediatric floors. For those patients, an IMCU may become their "inpatient medical home." Bidirectional communication with the patient's primary care pediatrician and/or true medical home is essential. See Table 1 for examples of CMC potentially appropriate for an IMCU.

A major subpopulation of CMC is children with tracheostomies. In a national survey of US hospitals with at least 2 nonneonatal pediatric wards, children with a tracheostomy and a ventilator being admitted to the hospital for mild nonrespiratory infection were triaged to a PICU in 65% of hospitals with no IMCU versus 46% in hospitals with an IMCU, with the IMCU accepting a significant percentage of such patients.²⁴ However, in a separate large multiinstitutional retrospective cohort study examining PICU admission and discharge efficiency metrics in hospitals with or without an IMCU, the authors were unable to demonstrate improvements to median PICU LOS for patients in the study or patients with CMC when comparing hospitals with an IMCU

4

ABEL I CONTINUED	
Organ System	IMCU Care Element Likely Not Available on a General Pediatric Floor
Patients with mild to moderate electrolyte disturbances potentially requiring intravenous replenishment and frequent laboratory monitoring but without significant hemodynamic, neurologic, or respiratory compromise	Close (q2–q4h) neurologic and cardiorespiratory monitoring
Patients with inborn errors of metabolism requiring correction and close cardiorespiratory monitoring but without cardiorespiratory compromise	Frequent laboratory monitoring $(\geq q2h)$
Gastrointestinal	
Patients with acute gastrointestinal bleeding requiring transfusions or intravenous therapy, but without significant hemodynamic or respiratory compromise	Close (q2–q4h) neurologic and cardiorespiratory monitoring
Patients with acute or acute-on-chronic gastrointestinal or hepatobiliary insufficiency but without neurologic or cardiorespiratory compromise	Frequent laboratory monitoring $(\geq q2h)$
Renal	
Patients with acute or acute-on-chronic hypertension who may require continuous or frequent intermittent intravenous therapy but without any neurologic sequelae	Close (q2–q4h) neurologic and cardiorespiratory monitoring
Patients with acute or acute-on-chronic renal failure who do not require continuous renal replacement therapy	Continuous or frequent (q2-q4h intermittent intravenous antihypertensive therapy Peritoneal dialysis or intermittent hemodialysis
Multisystem/Other	
Patients with uncomplicated toxic ingestions without significant cardiorespiratory compromise	Close (q2–q4h) neurologic and cardiorespiratory monitoring
Pediatric palliative care patients requiring continuous infusions to treat end-of-life dyspnea or anxiety	Need for noninvasive positive pressure ventilation

versus hospitals that did not have an IMCU in their adjusted model.¹²

Another major subpopulation of CMC is patients dependent on chronic NIPPV.²¹ For children with chronic NIPPV needs, 1 study found that if a child with a home continuous positive airway pressure requirement were admitted with a mild respiratory exacerbation, 59% of providers would admit the child to the PICU in hospitals with no IMCU, whereas in hospitals with an IMCU, 18% would admit to the PICU and a majority of providers would admit to the IMCU.24

The authors also want to emphasize the growing literature for CMC surrounding the critical importance of discharge care coordination with the patient's true medical home and

the need in this population for experienced care coordinators²⁵⁻³¹ because this is often not only a significant barrier to discharge for CMC but also a significant source of stress for families.²⁶

(d) Select healthy pre- or postoperative patients requiring higher intensity monitoring or interventions may be safely observed in an IMCU.

Rationale: Healthy pre- and/or postoperative surgical patients who may not meet the formal definition of critical illness but may be at risk for decompensation and require more frequent monitoring or nursing interventions for successful recovery, may be safely cared for in an IMCU. Specific potential examples are listed in Table 2.

Pediatric surgeons and subspecialty surgeons must be involved in the perioperative care of their patients, either as the admitting service of record or as a consultant.^{32,33} Many hospitals that house an IMCU may also be pediatric trauma centers. Pediatric trauma patients admitted to a verified American College of Surgeons level I pediatric trauma center must have care rendered by pediatric surgeons who are members of the trauma service.^{32,33} Some trauma or burn patients who do not require the acuity of the PICU may be well served in an IMCU.

(e) Patients may be discharged from the hospital when suitable or transferred to a general pediatric floor, as appropriate, when their acute process has improved enough that the intensity of their care needs (interventions, laboratory monitoring, respiratory treatments, etc.) may be met with general pediatric floor staffing, with particular attention to nursing and respiratory therapist ratios (eg, does not require more than 1:4 nurse-to-patient staffing).

3. IMCU Staffing

(a) IMCU nurse-to-patient ratios should be 1:2 or 1:3 depending on nursing needs, the acuity of patients in the IMCU, and the judgment of the team caring for the patient.

Rationale: Close nursing care is integral to the function of an IMCU, with more intensive nursing as one of the primary benefits over general floor care. IMCU nursing staff should attain competencies commensurate with the acuity of the patient population served and the therapies delivered.

(b) Pediatric hospital medicine fellowships should ensure that their trainees graduate with appropriate competencies to provide care for patients who meet IMCU levels of care, including general knowledge of surgical conditions.

Downloaded from http://publications.aap.org/pediatrics/article-pdf/doi/10.1542/peds.2022-057009/1279046/peds 2022057009.pdf

TABLE 2 Surgical	Subpopulations	Who May	Be Appropriate	for an IMCU

Surgical Subpopulation	Indication for IMCU Admission		
Select hemodynamically stable preoperative pediatric general surgery patients requiring ongoing fluid resuscitation and/or electrolyte correction	Frequent (q2-q4h) assessment and correction of fluid/electrolyte status before operative interventions		
Select extubated postoperative patients after major surgery	At risk for postoperative bleeding or challenges with pain control May require close postoperative monitoring and aggressive postoperative pulmonary toilet to prevent decline		
Patients with complex wounds	Require frequent, extensive and/or advanced wound care/dressing changes		
Patients with postsurgical limb- or anastomosis-viability concerns	Require close (≥ q2h) neurovascular monitoring		
Hemodynamically stable patients after percutaneous interventional procedures	Require frequent (≥ q2h) neurovascular checks and/or continuous anticoagulation infusions		
CMC who undergo elective or semielective surgery (eg, spinal fusion surgery) who are otherwise near their baseline level of needs	Close (q2–q4h) neurologic and cardiorespiratory monitoring Require close (q2–q4h) postoperative monitoring and aggressive postoperative pulmonary toilet to prevent decline Requiring frequent (q2–q4h) respiratory treatments/nebulization		
Select hemodynamically stable pediatric trauma patients	High-grade solid organ injury at risk for serious or ongoing bleeding		
Hemodynamically stable patients with extremity trauma and concern for vascular injury	Require frequent (\geq q2h) pulse or neurovascular checks		
Moderate traumatic brain injury not requiring an advanced airway or hyperosmolar therapy	Require frequent (q2h-q4h) neurologic assessments and close (q2h-q4h) cardiorespiratory monitoring to prevent decline		
Hemodynamically stable nonintubated burn patients	Require moderate sedation for daily dressing changes		

(c) An IMCU may allow for triage based on staffing needs and the development of expertise among all staff (physicians, advanced practice providers, nurses, respiratory therapists, etc) who acquire these added skill sets, which in turn may decrease stress and workload on both general floors and PICUs.

Rationale: The recent development and expansion of pediatric hospital medicine as a distinct pediatric subspecialty may allow for additional training for pediatric hospitalists in providing higher-acuity care.

4. IMCU Payment

6

(a) In resource-rich countries such as the United States, there should be the formal national creation of a third level of hospital care for pediatrics, reflecting the intensity of services offered between the PICU and the general floor, Intermediate Care.

Rationale: The current payment considerations for physicians and facilities in the intermediate care setting are complex and potentially at odds. According to guidelines from the Centers for Medicare and Medicaid Services (CMS), a physician may render services and bill associated charges in response to the severity of illness of the patient and the therapies they are managing. Services rendered range from hospital care codes levels 1 to 3, intensive care initial day and subsequent day codes depending on patient age and weight, and critical care services represented by either time-based or daily global codes depending on patient age. Location of services and physician training or board certification are not factors in determining whether critical care services may be delivered and charged.

By contrast, hospitals are offered only 2 CMS choices when seeking payment for care provided: general floor charge or PICU-level charge. In the "percentage of charge" model, the same care delivered in a PICU may charge twice as much as that delivered in an IMCU if the latter is charged as a general floor bed. On the other hand, in the all patient refined-diagnosis related groups model, in which institutions are reimbursed a flat fee for the admission on the basis of patient diagnosis and severity of illness, it is against the hospital's interests to care for the patient in a setting more intensive or expensive than is medically appropriate.³⁴ Depending on how a hospital charges for an IMCU bed and which payment scheme is operative for a particular institution, an IMCU may be inherently averse or beneficial to the financial interests of the institution, independent from questions of hospital bed efficiency.

In light of the malalignment of these hospital incentives, there should be a formal national creation of a third level of hospital care, intermediate care, reflecting the intensity of services offered between the PICU and the general floor. Recognizing intermediate care as its own level of care would align institutional incentives with patient care interests. Several states have already established guidelines for design and/or nurse staffing ratios in IMCUs, including Massachusetts, New York, California, Connecticut, Rhode Island, and New Jersey. However, CMS is the only national body authorized to establish an associated charge for payers.

SUMMARY AND CONCLUSIONS

Identified Priorities for Future Investigation and Advocacy

(a) Describe pediatric IMCU structures and staffing models present nationally and any corresponding associations with patient outcomes, including quality and safety metrics. Explore the role of pediatric hospitalists in the provision of intermediate-level care in a variety of hospital settings.

(b) Benchmark quality and safety outcomes for patient populations who require intermediate-level care (likely disease- and/or technology-specific given the heterogeneity of IMCU care models [eg, outcomes for asthmatic patients requiring continuous albuterol or outcomes for acute on chronic respiratory failure in patients with a tracheostomy/ventilator]).

(c) Explore IMCU health care value based on regionalization of pediatric care.

(d) Advocate for CMS recognition of the IMCU level of care with associated hospital payment.

Lead Authors

Nicholas A. Ettinger, MD, PhD, CMQ, CPPS, FAAP Vanessa L. Hill, MD, FAAP Christiana M. Russ, MD, FAAP Katherine J. Rakoczy, MD, FAAP Mary E. Fallat, MD, FAAP, FACS Tiffany N. Wright, MD Karen Choong, MB, BCh, MSc, FRCPC Michael SD Agus, MD, FAAP Benson Hsu, MD, MBA, FCCM, FAAP

AAP Section on Critical Care Executive Committee, 2020–2021

Elizabeth Mack, MD, MS, FAAP, FCCM, Chairperson Michael S.D. Agus, MD, FAAP, Immediate Past Chair Scottie Day, MD, FAAP Nicholas Ettinger, MD, PhD, CMQ, CPPS, FAAP Benson S. Hsu, MD, MBA, FAAP, FCCM, Chair-Elect Steven Loscalzo, MD, FAAP, Post-Residency Training Fellow Member Lia Lowrie, MD, FAAP Linda Siegel, MD, FAAP Vijay Srinivasan, MD, FAAP

Former Section on Critical Care Member, 2019–2020

Erika O'Neil Bernardo, MD, FAAP

Liaisons

Samir Gadepalli, MS, MD, MBA, FAAP – AAP Section on Surgery Eliotte L. Hirshberg, MD, FAAP – SOCC Program Chair Niranjan Kissoon, MD – World Federation of Pediatric Intensive & Critical Care Societies Tessie October, MD, MPH, FAAP – National Institute of Child Health & Human Development Robert Francis Tamburro, Jr., MD, FAAP – National Institute of Child Health & Human Development Alexandre Rotta, MD – Society of Critical Care Medicine

Staff

Sue Tellez

AAP Committee on Hospital Care, 2020–2021

Daniel A. Rauch, MD, FAAP, Chairperson Kimberly Ernst, MD, MSMI, FAAP Benson Hsu, MD, MBA, FCCM, FAAP – AAP Section on Critical Care Member Vinh Lam, MD, FAAP Melissa Mauro-Small, MD, FAAP – AAP Section on Hospital Medicine Member Nerian Ortiz-Mato, MD, FAAP Charles Vinocur, MD, FAAP, FACS

Former Committee on Hospital Care Member, 2019-2020

Vanessa Hill, MD, FAAP

Liaisons

Michael S. Leonard, MD, MS, FAAP – Representative to The Joint Commission Karen Castleberry – Family Representative Nancy Hanson – Children's Hospital Association Kristin Hittle Gigli, PhD, RN, CPNP-AC, CCRN – National Association of Pediatric Nurse Practitioners Barbara Romito, MA, CCLS – Association of Child Life Professionals

Staff

S. Niccole Alexander, MPP

AAP Section on Surgery Executive Committee, 2020–2021

Andrew Davidoff, MD, FAAP, Chairperson Gail E. Besner, MD, FAAP, Immediate Past Chair Marybeth Browne, MD, FAAP Cynthia D. Downard, MD, FAAP Kenneth William Gow, MD, FAAP Saleem Islam, MD, MPH, FAAP Danielle Saunders Walsh, MD, FAAP

Former Committee on Hospital Care Member, 2019–2020

Vanessa Hill, MD, FAAP

Liaisons

Regan Frances Williams, MD, FAAP – Early Career Liaison

Staff

Vivian Thorne

ABBREVIATIONS

AAP: American Academy of Pediatrics
CMC: children with medical complexity
CMS: Centers for Medicare and Medicaid Services
IMCU: intermediate care unit
LOS: length of stay
NIPPV: noninvasive positive pressure ventilation

Downloaded from http://publications.aap.org/pediatrics/article-pdf/doi/10.1542/peds.2022-057009/1279046/peds_2022057009.pdf

REFERENCES

- Jaimovich DG; American Academy of Pediatrics Committee on Hospital Care and Section on Critical Care. Admission and discharge guidelines for the pediatric patient requiring intermediate care. *Pediatrics*. 2004;113(5):1430–1433
- Royal College of Paediatrics and Child Health. High dependency care for children - time to move on: a focus on the critically ill child pathway beyond the paediatric intensive care unit. Available at: https://www.rcpch.ac.uk/resources/ high-dependency-care-children-timemove. Accessed October 29, 2020
- NHS England. Schedule 2 the services. Available at: https://www.england.nhs. uk/commissioning/wp-content/uploads/ sites/12/2015/01/eo7-sb-paed-hig-depcare.pdf. Accessed August 31, 2021
- Frankel LR, Hsu BS, Yeh TS, et al. Criteria for critical care infants and children: PICU admission, discharge, and triage practice statement and levels of care guidance. *Pediatr Crit Care Med.* 2019;20(9):847–887
- Hsu BS, Hill V, Frankel LR, et al. Executive summary: criteria for critical care of infants and children: PICU admission, discharge, and triage practice statement and levels of care guidance. *Pediatrics.* 2019;144(4):e20192433
- Joseph C. Effect of a monitored care unit on resource utilization in a pediatric ICU. *Am J Crit Care*. 1997;6(4): 296–301
- Solberg BC, Dirksen CD, Nieman FH, et al. Introducing an integrated intermediate care unit improves ICU utilization: a prospective intervention study. *BMC Anesthesiol.* 2014;14:76
- Besserman E, Teres D, Logan A, et al. Use of flexible intermediate and intensive care to reduce multiple transfers of patients. *Am J Crit Care*. 1999;8(3):170–179
- Bertolini G, Confalonieri M, Rossi C, et al; GiViTI (Gruppo italiano per la Valutazione degli interventi in Terapia Intensiva) Group; Aipo (Associazione Italiana Pneumologi Ospedalieri) Group. Costs of the COPD. Differences between intensive care unit and respiratory

8

intermediate care unit. *Respir Med.* 2005;99(7):894–900

- 10. Capuzzo M, Volta C, Tassinati T, et al; Working Group on Health Economics of the European Society of Intensive Care Medicine. Hospital mortality of adults admitted to intensive care units in hospitals with and without intermediate care units: a multicentre European cohort study. *Crit Care*. 2014;18(5):551
- 11. Plate JDJ, Leenen LPH, Houwert M, Hietbrink F. Utilisation of intermediate care units: a systematic review. *Crit Care Res Pract.* 2017;2017:8038460
- Geneslaw AS, Jia H, Lucas AR, Agus MSD, Edwards JD. Pediatric intermediate care and pediatric intensive care units: PICU metrics and an analysis of patients that use both. *J Crit Care*. 2017;41:268–274
- Wendlandt B, Bice T, Carson S, Chang L. Intermediate care units: a survey of organization practices across the United States. *J Intensive Care Med.* 2020;35(5):468–471
- 14. Lucena JF, Alegre F, Rodil R, et al. Results of a retrospective observational study of intermediate care staffed by hospitalists: impact on mortality, co-management, and teaching. J Hosp Med. 2012;7(5):411–415
- Yoo EJ, Damaghi N, Shakespeare WG, Sherman MS. The effect of physician staffing model on patient outcomes in a medical progressive care unit. *J Crit Care.* 2016;32:68–72
- Smith A, Kelly DP, Hurlbut J, Melvin P, Russ CM. Initiation of noninvasive ventilation for acute respiratory failure in a pediatric intermediate care unit. *Hosp Pediatr*: 2019;9(7):538–544
- Cheng DR, Hui C, Langrish K, Beck CE. Anticipating pediatric patient transfers from intermediate to intensive care. *Hosp Pediatr*: 2020;10(4):347–352
- Morris KP, Oppong R, Holdback N, Coast J; West Midlands Paediatric High Dependency Group. Defining criteria and resource use for high dependency care in children: an observational economic study. Arch Dis Child. 2014;99(7):652–658

- Shiffman RN, Marcuse EK, Moyer VA, et al; American Academy of Pediatrics Steering Committee on Quality Improvement and Management. Toward transparent clinical policies. *Pediatrics*. 2008;121(3):643–646
- Morris JV, Ramnarayan P, Parslow RC, Fleming SJ. Outcomes for children receiving noninvasive ventilation as the first-line mode of mechanical ventilation at intensive care admission: a propensity score-matched cohort study. *Crit Care Med.* 2017;45(6):1045–1053
- Masa JF, Utrabo I, Gomez de Terreros J, et al. Noninvasive ventilation for severely acidotic patients in respiratory intermediate care units : Precision medicine in intermediate care units. *BMC Pulm Med.* 2016;16(1):97
- Cohen E, Kuo DZ, Agrawal R, et al. Children with medical complexity: an emerging population for clinical and research initiatives. *Pediatrics*. 2011; 127(3):529–538
- Pordes E, Gordon J, Sanders LM, Cohen E. Models of care delivery for children with medical complexity. *Pediatrics*. 2018;141(Suppl 3):S212–S223
- Russ CM, Agus M. Triage of intermediate-care patients in pediatric hospitals. *Hosp Pediatr*: 2015;5(10):542–547
- de Banate MA, Maypole J, Sadof M. Care coordination for children with medical complexity. *Curr Opin Pediatr*. 2019;31(4):575–582
- Ronis SD, Grossberg R, Allen R, Hertz A, Kleinman LC. Estimated nonreimbursed costs for care coordination for children with medical complexity. *Pediatrics*. 2019;143(1):e20173562
- Parast L, Burkhart Q, Gidengil C, et al. Validation of new care coordination quality measures for children with medical complexity. *Acad Pediatr*. 2018;18(5):581–588
- Kuo DZ, McAllister JW, Rossignol L, Turchi RM, Stille CJ. Care coordination for children with medical complexity: whose care is it, anyway? *Pediatrics*. 2018;141(Suppl 3):S224–S232
- 29. Shapiro MC, Henderson CM, Hutton N, Boss RD. Defining pediatric chronic

Downloaded from http://publications.aap.org/pediatrics/article-pdf/doi/10.1542/peds.2022-057009/1279046/peds_2022057009.pdf

critical illness for clinical care, research, and policy. *Hosp Pediatr*: 2017;7(4):236–244

- Marcus KL, Henderson CM, Boss RD. Chronic critical illness in infants and children: a speculative synthesis on adapting ICU care to meet the needs of long-stay patients. *Pediatr Crit Care Med.* 2016;17(8):743–752
- 31. Price J, Brandt ML, Hudak ML; Committee on Child Health Financing. Princi-

ples of financing the medical home for children. *Pediatrics*. 2020;145(1): e20193451

- 32. Wang KS, Cummings J, Stark A, et al; Section on Surgery, Committee on Fetus and Newborn, Section on Anesthesiology and Pain Medicine. Optimizing resources in children's surgical care: an update on the American College of Surgeons' verification program. *Pediatrics.* 2020;145(5):e20200708
- 33. American College of Surgeons. Optimal resources for children's surgical care v.1. Available at: https://www.facs.org/Quality-Programs/Childrens-Surgery/ Childrens-Surgery-Verification/ standards. Accessed December 17, 2020
- Quinn K. After the revolution: DRGs at age 30. Ann Intern Med. 2014;160(6): 426–429