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Abstract

IMPORTANCE Laboratory testing is an important target for high-value care initiatives, constituting
the highest volume of medical procedures. Prior studies have found that up to half of all inpatient
laboratory tests may be medically unnecessary, but a systematic method to identify these
unnecessary tests in individual cases is lacking.

OBJECTIVE To systematically identify low-yield inpatient laboratory testing through personalized
predictions.

DESIGN, SETTING, AND PARTICIPANTS In this retrospective diagnostic study with multivariable
prediction models, 116 637 inpatients treated at Stanford University Hospital from January 1, 2008,
to December 31, 2017, a total of 60 929 inpatients treated at University of Michigan from January 1,
2015, to December 31, 2018, and 13 940 inpatients treated at the University of California, San
Francisco from January 1 to December 31, 2018, were assessed.

MAIN OUTCOMES AND MEASURES Diagnostic accuracy measures, including sensitivity, specificity,
negative predictive values (NPVs), positive predictive values (PPVs), and area under the receiver
operating characteristic curve (AUROC), of machine learning models when predicting whether
inpatient laboratory tests yield a normal result as defined by local laboratory reference ranges.

RESULTS In the recent data sets (July 1, 2014, to June 30, 2017) from Stanford University Hospital
(including 22 664 female inpatients with a mean [SD] age of 58.8 [19.0] years and 22 016 male
inpatients with a mean [SD] age of 59.0 [18.1] years), among the top 20 highest-volume tests,
792 397 were repeats of orders within 24 hours, including tests that are physiologically unlikely to
yield new information that quickly (eg, white blood cell differential, glycated hemoglobin, and serum
albumin level). The best-performing machine learning models predicted normal results with an
AUROC of 0.90 or greater for 12 stand-alone laboratory tests (eg, sodium AUROC, 0.92 [95% CI,
0.91-0.93]; sensitivity, 98%; specificity, 35%; PPV, 66%; NPV, 93%; lactate dehydrogenase AUROC,
0.93 [95% CI, 0.93-0.94]; sensitivity, 96%; specificity, 65%; PPV, 71%; NPV, 95%; and troponin I
AUROC, 0.92 [95% CI, 0.91-0.93]; sensitivity, 88%; specificity, 79%; PPV, 67%; NPV, 93%) and 10
common laboratory test components (eg, hemoglobin AUROC, 0.94 [95% CI, 0.92-0.95]; sensitivity,
99%; specificity, 17%; PPV, 90%; NPV, 81%; creatinine AUROC, 0.96 [95% CI, 0.96-0.97];
sensitivity, 93%; specificity, 83%; PPV, 79%; NPV, 94%; and urea nitrogen AUROC, 0.95 [95% CI,
0.94, 0.96]; sensitivity, 87%; specificity, 89%; PPV, 77%; NPV 94%).

CONCLUSIONS AND RELEVANCE The findings suggest that low-yield diagnostic testing is common
and can be systematically identified through data-driven methods and patient context–aware
predictions. Implementing machine learning models appear to be able to quantify the level of
uncertainty and expected information gained from diagnostic tests explicitly, with the potential to
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Abstract (continued)

encourage useful testing and discourage low-value testing that incurs direct costs and indirect harms.

JAMA Network Open. 2019;2(9):e1910967.

Corrected on October 11, 2019. doi:10.1001/jamanetworkopen.2019.10967

Introduction

Unsustainable growth in health care costs is exacerbated by waste that does not improve health.1,2

The Institute of Medicine estimates that more than $200 billion a year is spent on unnecessary tests
and procedures.3 Given this amount of misallocated resources, there has been an increasing
emphasis on high-value care, notably with the American Board of Internal Medicine Foundation’s
Choosing Wisely guidelines.4 Laboratory testing, in particular, constitutes the highest-volume
medical procedure,5 with estimates of up to 25% to 50% of all inpatient testing being medically
unnecessary.6,7 The consequences of unnecessary testing are not simply financial but also include
low patient satisfaction, sleep fragmentation, risk of delirium, iatrogenic anemia, and increased
mortality.8-11

Numerous interventions have been studied to reduce inappropriate laboratory testing,
including clinical education, audit feedback, financial incentives, and electronic medical record
(EMR)–based ordering restrictions.12-15 Interventions based on EMRs offer pertinent information for
clinical decision-making, such as cost, turnaround time, prior stable results, and guideline-based best
practice alerts.16-20 Despite these efforts, unnecessary tests remain prolific when practitioners are
influenced by fear of missing problems, medicolegal concerns, patient preferences, and the overall
difficulty of systematically identifying low-value testing at the point of care, prompting behavior to
check just in case.21,22

We envisioned patient-specific estimates of the pretest probability of results for any diagnostic
test, displayed at the point of clinical order entry. When humans tend to have poor intuition for
estimating probabilities and diagnostic test performance, having automated computer systems
explicitly provide those estimates could substantially change clinical practice.23 Machine learning in
medicine now offers a direct mechanism to produce such estimates by predicting select laboratory
results.24-30 Although prior approaches can provide a laboratory result given other simultaneously
available results (eg, estimating ferritin levels when other components of an iron panel are given),
this is too late for decision support to change behavior when the tests are already performed. We
addressed the more clinically relevant question of predicting laboratory results with only information
available before the test is ordered.

Our objective was to identify inpatient diagnostic laboratory testing with predictable results
that are unlikely to yield new information. Our analytic approach escalated from descriptive statistics
to machine learning models for individualized estimates of predictable test results.

Methods

This diagnostic study followed the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline for reporting results of multivariate
prediction models31 to develop and evaluate our machine learning methods (eFigure 1 in the Supplement
gives an overview of our approach). Ten years (January 1, 2008, to December 31, 2017) of inpatient
electronic medical record (EMR) data from hospitals at Stanford University, 4 years (January 1, 2015,
to December 31, 2018) of data from University of Michigan (UMich), and 1 year (2018) of data from
University of California, San Francisco (UCSF) were used for this study. To preserve data privacy, raw
clinical data were deidentified, processed, trained, and evaluated locally at each local site, with only
evaluation results sent back to Stanford for further analysis. The Stanford University, UMich, and UCSF
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institutional review boards approved the study at each site. Project-specific informed consent was not
required because the study was restricted to secondary analysis of existing clinical data. Patient data
at Stanford University were extracted and deidentified by the STRIDE (Stanford Translational Research
Integrated Database Environment) project, a research and development project at Stanford University
to create a standards-based informatics platform supporting clinical and translational research.

Participants and Inclusion Criteria
All laboratory test results had reference labels for normal vs abnormal results as defined by local
clinical laboratory reference ranges and at least 500 occurrences in a data set. For each laboratory
test, we retrieved a random sample of 10 000 test orders from the available data (or all orders if
<10 000).

Outcome and Evaluation Metrics
Our goal was to predict the result (negative vs positive) of each laboratory test using information
available before the order was placed. We considered stand-alone tests, in which a single order
yielded a single result (eg, magnesium level, lactate level, or blood cultures), and panel tests that
yielded multiple component results (eg, a complete blood cell count panel yielded white blood cell,
hemoglobin, and platelet component results). We predicted the results of each panel component
separately to avoid labeling an entire panel as positive or negative. We evaluated prediction
performance through standard metrics for diagnostic accuracy, including the area under the receiver
operating characteristic curve (ie, AUROC or C statistic), which summarizes the trade-off between
sensitivity and specificity.32 Given specific decision thresholds, we calculated diagnostic test metrics,
including sensitivity, specificity, positive predictive value, and negative predictive value (NPV).
Typically, such metrics evaluate how well a test predicts a diagnosis. In our case, a test result being
abnormal was itself the diagnosis, whereas the prediction algorithms operated as screening tests
compared with the physical laboratory tests. For example, NPV was the probability of being correct
when a negative or normal result was predicted.

Predictors and Data Feature
For each laboratory, 875 raw features from the Stanford University EMR that reflected patient clinical
context available at the time of the order entry were extracted (eTable 1 in the Supplement). The core
features included patient demographics, normality of the most recent test of interest, numbers of
recent tests of interest, history of Charlson Comorbidity Index categories, which specialty team was
treating the patient, time since admission, time of day and year of the test, and summary statistics of
recent vital statistics and laboratory results. Vital statistics and treatment team information were not
accessible in the UMich data sample, which yielded 603 raw features. Age and sex information were
not accessible in the UCSF data sample, which yielded 806 raw features.

Development vs Validation Split
Patients were randomly split into training (development) and held-out test (validation) sets with a
75:25 split. The model was developed based on the training data alone but assessed generalizable
predictive accuracy on the separate patients in the held-out sets.

Missing Data
Most of the data features, such as history of a comorbidity category or the number of prior laboratory
tests, always had a valid value (including not present or zero). Numerical results (eg, mean sodium
level in the past week) could be missing, in which case we carried forward the most recent value from
the patient’s prior records. If no prior values existed, we imputed the training sample mean.
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Feature Selection
We applied recursive feature elimination (with cross-validation) to select the top 5% most important
features for model building that best improved accuracy when included in prediction models. This
resulted in 43 processed features in each subsequent prediction model (the eMethods in the
Supplement gives technical explanations).

Model Development
We built an array of prediction models using established algorithms,33 including regularized logistic
regression, regress and round, naive Bayes, neural network multilayer perceptrons, decision tree,
random forest, AdaBoost, and XGBoost.34 Each model generated a prediction score between 0 and
1 for how likely a laboratory test result would be negative or normal vs positive or abnormal
(Figure 1A). A baseline model predicted the most recent result (if the patient had a prior test) or the

Figure 1. Normality Scores, Decision Threshold, and Receiver Operating Characteristic (ROC) Curve
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A, Histogram of normality scores distributed among normal and abnormal orders. B,
After picking a threshold, orders were classified as predicted to be normal if their
normality scores were above the threshold or predicted to be abnormal if they were
below the threshold. True-negative orders were predicted to be normal but actually were
normal, false-negative orders were predicted to be normal but actually were abnormal,

false-positive orders were predicted to be abnormal but actually were normal, and true-
positive orders were predicted to be abnormal but actually were abnormal. C, This choice
of threshold led to a sensitivity of 96% and specificity of 67%, as shown on the
ROC curve.
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overall prevalence of positive results as the prediction score. Additional model specifications are
included in eTable 2 in the Supplement.

Decision Threshold Estimation
Decision thresholds translate continuous prediction scores into discrete negative vs positive
predictions (Figure 1B). We conservatively favored high sensitivity and high NPV to minimize the risks
of alert fatigue and missing clinically important laboratory test result abnormalities (Figure 1C).35,36

This article gives results targeting an NPV of 95%, recognizing the diminishing returns of expected
information gain when one is already 95% certain of the result.37 These diminishing returns were
easily adjusted for different clinical scenarios with varying tolerances for uncertainty because we
confirmed robustness across a range of options targeting NPVs of 99%, 95%, 90%, and 80%
(eTable 3 in the Supplement).

Statistical Analysis
To assess the statistical significance of the results, we calculated 95% CIs for AUROCs by resampling
the evaluation set 1000 times for each laboratory (Table and eTables 3-8 in the Supplement). We
performed additional randomized permutation tests to compare the AUROC of the best-performing
algorithm against that of the baseline model (eFigures 2-7 in the Supplement).

Multisite Evaluation
We performed equivalent analysis from multiple sites, including hospitals at Stanford University,
UMich, and UCSF. We developed mapping software between the data formats from different sites to
allow for a common analytic process at each site without sharing raw clinical data. We cross-
evaluated performances of models trained at one site and then tested at another.

Results

Prevalence of Repetitive Tests
The recent data sets (July 1, 2014, to June 30, 2017) from Stanford University Hospital included
22 664 female inpatients (mean [SD] age, 58.8 [19.0] years) and 22 016 male inpatients (mean [SD]

Table. Diagnostic Performance Metrics of Top-Volume Stand-Alone Laboratory Tests Predicting Whether Laboratory Tests Will Yield a Normal Result
on a Held-Out Evaluation Set, Targeting at an NPV of 95%

Laboratory Test

No. of Orders/
1000 Patient
Encounters AUROC (95% CI)

Metric, %

Prevalencea NPV PPV Sensitivity Specificity TN FN TP FP
Magnesium 4246 0.76 (0.74-0.78) 26 91 36 86 47 35 3.6 22 39

Prothrombin time 2244 0.89 (0.88-0.91) 80 85 81 100 3.6 0.7 0.1 80 19

Phosphorus 2120 0.74 (0.72-0.76) 33 88 39 91 30 20 2.8 30 47

Partial thromboplastin
time

1471 0.86 (0.85-0.87) 61 87 65 98 17 6.5 1.0 60 32

Lactate 1230 0.87 (0.85-0.88) 29 91 56 82 74 53 5.2 23 19

Calcium, ionized 1197 0.72 (0.70-0.74) 61 90 62 100 4.8 1.9 0.2 61 37

Potassium 752 0.81 (0.79-0.84) 12 92 40 43 91 80 7.0 5.2 7.9

Troponin I 534 0.92 (0.91-0.93) 33 93 67 88 79 53 4.0 29 14

LDH 455 0.93 (0.93-0.94) 47 95 71 96 65 35 1.8 45 18

Blood culture

Aerobic and anaerobic 400 0.66 (0.61-0.71) 8.1 93 16 16 93 85 6.8 1.3 6.6

2 Aerobic 371 0.62 (0.58-0.67) 9.1 93 12 61 54 49 3.6 5.6 42

Sodium 361 0.92 (0.91-0.93) 57 93 66 98 35 15 1.1 56 28

Abbreviations: AUROC, area under the receiver operating characteristic curve; FN, false-
negative; FP, false-positive; LDH, lactate dehydrogenase; NPV, negative predictive value;
PPV, positive predictive value; TN, true-negative; TP, true-positive.

a Prevalence of abnormal or positive test results.
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age, 59.0 [18.1] years). Figure 2A reports the overall volume of the most commonly repeated
inpatient laboratory tests at Stanford University during that period. Among the top 20 volume tests,
792 397 were repeats of orders within 24 hours. Figure 2B reports the repetition rate of common
tests medically implausible to yield new information from frequent testing (eg, glycated
hemoglobin).38 The likelihood of common laboratory components that yielded a negative result
progressively increased as repeated negative results were observed (Figure 2C).

Model Performance
Random forest and XGBoost demonstrated the highest discriminating power for most of the stand-
alone laboratory tests from Stanford University hospital, yielding a mean AUROC of 0.77 compared
with 0.67 with the baseline model (eFigure 2 in the Supplement gives the ROC curves). The best-
performing machine learning models predicted normal results with an AUROC of 0.90 or greater for
12 stand-alone laboratory tests (eg, sodium AUROC, 0.92 [95% CI, 0.91-0.93]; sensitivity, 98%;
specificity, 35%; PPV, 66%; NPV, 93%; lactate dehydrogenase AUROC, 0.93 [95% CI, 0.93-0.94];
sensitivity, 96%; specificity, 65%; PPV, 71%; NPV, 95%; and troponin I AUROC, 0.92 [95% CI, 0.91-
0.93]; sensitivity, 88%; specificity, 79%; PPV, 67%; NPV, 93%) and 10 common laboratory test
components (eg, hemoglobin AUROC, 0.94 [95% CI, 0.92-0.95]; sensitivity, 99%; specificity, 17%;
PPV, 90%; NPV, 81%; creatinine AUROC, 0.96 [95% CI, 0.96-0.97]; sensitivity, 93%; specificity,
83%; PPV, 79%; NPV, 94%; and urea nitrogen AUROC, 0.95 [95% CI, 0.94, 0.96]; sensitivity, 87%;
specificity, 89%; PPV, 77%; NPV 94%). Diagnostic performance metrics for the most common stand-
alone laboratory tests when targeting 95% NPV are given in the Table, with the full table of all

Figure 2. Prevalence of Repetitive Tests and Their Diminishing Information Gain
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A, Most commonly repeated laboratory test orders from July 1, 2014, to June 30, 2017,
at Stanford University Hospital. The total length of each bar represents the total volume
of laboratory orders per 1000 patient encounters, with shaded regions reflecting how
many of these were repeated orders within a given time. For example, 47% of basic
metabolic panels were subsequent tests performed again within 24 hours of the past
order. Results were sorted by this number of repeated tests within 24 hours. B,
Distribution of repeated orders for laboratory tests specifically identified as rarely ever
having clinical justification for repeated daily testing.38 For example, 18.3% of albumin

and 6.7% of glycated hemoglobin inpatient tests were performed again within 24 hours,
even when it was not biologically plausible for the results to meaningfully change that
rapidly. C, Prevalence of normal results for common laboratory components
progressively increased toward 100% as more subsequent normal results were observed
in the prior week. CBC with diff indicates complete blood cell count with differential;
LDH, lactate dehydrogenase; NT-proBNP, N-terminal pro–brain-type natriuretic peptide;
and PTT, partial thromboplastin time.
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laboratory tests evaluated in eTable 3 in the Supplement. Performance metrics for the common
components in complete blood cell counts and comprehensive metabolic panels are given in Figure 3
along with results from UMich and UCSF data, with the full table of diagnostic performance metrics
in eTable 4 in the Supplement and ROC curves in eFigure 3 in the Supplement.

Model Transferability
The respective prediction results for UMich data are reported in eFigure 4, eFigure 5, eTable 5, and
eTable 6 in the Supplement, whereas similar results from UCSF are reported in eFigure 6, eFigure 7,
eTable 7, and eTable 8 in the Supplement. Figure 4 gives the performance of models trained at
Stanford University and subsequently evaluated at all sites. Although cross-site performance
declined compared with local performance (eg, when predicting albumin results, AUROC decreased
from 0.92 [95% CI, 0.91-0.94] when locally tested at Stanford University to 0.73 [95% CI, 0.70-
0.75] when remotely tested at UMich), predictive power was retained (AUROC, >0.85) for most

Figure 3. Diagnostic Metrics of Predictions on Common Components in the Data Sets of Stanford University,
University of Michigan (UMich), and University of California, San Francisco (UCSF)
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600030000300060008000

Stanford UMich
Predicted
Abnormal

Predicted
Normal

White blood cells
Hemoglobin

Platelets
Sodium

Potassium
Carbon dioxide

Urea nitrogen
Creatinine

Calcium
Albumin

Protein
Alkaline phosphatase

Total bilirubin
AST
ALT

60003000030006000

Predicted
Abnormal

Predicted
Normal

UCSF

60003000030006000

Predicted
Abnormal

Predicted
Normal

No. of Orders per
1000 Patient Encounters

No. of Orders per
1000 Patient Encounters

No. of Orders per
1000 Patient Encounters

Fractions of true-negative, false-negative, false-
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number of orders among each 1000 patient
encounters. Predicted normal represents the volume
that the model would suggest not to order, and we
targeted to limit the fraction of false-negative results
to less than 5%. For some laboratory tests (eg, albumin
measurement at Stanford University), there were
almost zero predicted normal results, which means
that a few orders existed in the training set that were
unpredictable; thus, the predictor could not
confidently achieve a 95% negative predictive value
by picking any threshold above 0. The model chose a
decision threshold equal to 0, which led to scores of all
orders in the test set falling above the decision
threshold, thus always encouraging ordering the test.
ALT indicates alanine aminotransferase; AST, aspartate
aminotransferase.

Figure 4. Area Under the Receiver Operating Characteristic Curve (AUROC) Scores of Models for 15 Common
Laboratory Test Components Developed at Stanford University but Evaluated at All Sites

AUROC Score
0.90.80.70.60.5 1.0

Stanford

UCSF

UMichWhite blood cells

Hemoglobin

Platelets

Sodium

Potassium

Carbon dioxide

Urea nitrogen

Creatinine

Calcium

Albumin

Protein

Alkaline phosphatase

Total bilirubin

AST

ALT

The model generally achieved highest performance
when evaluated locally at Stanford University with an
AUROC of 0.9 or greater for 10 laboratory test
components but still retained at 0.85 or greater in 9
cases when evaluated remotely at University of
California, San Francisco (UCSF) and University of
Michigan (UMich).
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laboratory components (eTable 9 in the Supplement gives the full comparison data). For certain
tests, such as sodium level, however, the model trained at Stanford University had a better AUROC
when tested at UMich (0.91; 95% CI, 0.90-0.93) than locally at Stanford University (0.87; 95% CI,
0.85-0.88). Inspection of the data and model showed that the UMich sodium level was easier to
predict, with a baseline model already yielding an AUROC of 0.87 at UMich and 0.79 at Stanford
University.

Discussion

Interpretation
This study systematically identified low-yield diagnostic laboratory tests. Starting with simple
descriptive statistics, Figure 2 shows how frequently laboratory tests are performed again. Although
some tests may have credible reasons for such frequent repetition, guidelines and external
knowledge can help identify some low-value repeated tests.38 For example, hundreds of tests for
serum albumin, thyrotropin, and glycated hemoglobin levels were performed again within 24 hours,
along with tens of thousands of repetitive tests for phosphorus and complete blood cell counts with
differential. This finding quantitatively supports issues suggested in previous guidelines that
hospitals can immediately use to target unnecessary repeated tests, such as through best practice
alerts showing recently available test results.12,19,38-40

Most instances of low-yield testing are not as straightforward to identify; thus, our study added
machine learning methods for personalized test result predictions. Additional features, such as
patient demographics, vital signs, and other common laboratory results, can be synthesized through
machine learning models to produce more robust and accurate predictions. Although different
applications and clinical contexts will have different tolerances for uncertainty, the study gave the
primary results when choosing a conservative target NPV close to 95% (when the model predicted a
test result was going to be normal, the goal was for it to be correct 95% of the time). This approach
fits a scenario in which these targets are implemented as best practice alerts with a desire to maintain
a small number of false-positive results (5%). The results at this level of pretest were estimated by
which pursuing further testing would yield markedly diminishing returns.37 eTables 3 through 8 in the
Supplement give similar results across a range of different NPV targets.

Consistent with existing guideline-based forms of clinical decision support, pretest estimates of
whether a laboratory test result will be normal would inform physician decision-making but not
dictate or replace it. Ultimately, medical testing decisions are always based on varying levels of
diagnostic certainty,41 even if practitioners are only implicitly aware that they are empirically
estimating probabilistic risks based on patient characteristics. For example, blood cultures are not
performed for every febrile patient because a credible risk of bacteremia is qualitatively recognized
in only certain situations. Likewise, blood cultures are performed in sets of 4 bottles at a time, but we
do not continue to check 5 or more bottles because we recognize further repeated tests are unlikely
to yield information that was not already predictable based on the prior results. This approach
provides a systematic and quantitative way to inform such decisions. The results should encourage
practitioners and quality improvement committees to make explicit and quantitative their own
embedded assumptions on acceptable decision thresholds. The general framework presented to
quantify uncertainty can then feed into individual point-of-care decisions or more formal decision
analyses.42

Implications
This study provides a general approach to identifying predictable laboratory tests. Many of the
laboratory tests that we evaluated have been evaluated for overuse, including magnesium
level,15,43-45 blood cultures,46 and complete blood cell counts.47 Patient-specific estimates of
laboratory test result normality at the point-of-order entry may discourage low-yield tests with
predictably negative results and encourage appropriate tests with high levels of uncertainty. For
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example, when our method did not predict a blood culture result to be negative, this corresponds to
greater than 16% positive predictive value (Table). This finding is more than enough risk of
bacteremia to prompt diagnostic testing and even empirical treatment.

This approach can also raise questions on how guideline- and protocol-based testing is
implemented and could be optimized. The optimal threshold of acceptable uncertainty depends on
the clinical scenario and the particular test. For example, although screening tests (eg, HIV testing or
pregnancy screens in hospital settings) have predictable normal results, most of the time, they are
unlikely to be influenced by decision support when the effect of missing an abnormal case is
sufficiently severe and driven by overriding protocols. Similarly, regulatory requirements around
sepsis protocols are a major driver of repeated lactate testing that may not be amenable to decision
support on predictable results. The results of this study can still inform the development of such
regulatory requirements on the appropriate number and interval of screening tests that may
otherwise be excessive or too rigid for individual cases. In predictable cases, the risk of false-positive
test results (and adverse downstream effects) may be substantial.

These results can also provide foundational quantitative support for cost-effectiveness analysis.
For example, if scaling the annual volume of predictable tests (predicted normal results) by their
financial costs (eTable 10 in the Supplement), one could estimate annual savings by avoiding these
tests. However, this saving should be carefully compared against potential harms and costs
generated from missing the actually abnormal tests (false-negative results). In cases of panel test
ordering, practitioners are often only interested in 1 or 2 components of panel tests at a time (eg,
sodium level from a metabolic panel or hemoglobin level from a complete blood cell count). Most
panel components may be predictably normal, but there could still be value in the overall order if
there is sufficient uncertainty in at least 1 other clinically relevant component. Our separate
predictions for each panel component in Figure 3 would allow practitioners to decide which
components are relevant for their decision-making in future point-of-care information displays.

The results also allow us to systematically identify relevant factors that are predictive of each
test result. This identification can inform simple rule-based clinical decision support based on factors
including obvious elements, such as prior results, and less obvious ones, such as sex for ferritin status
and surgical vs medical team for cerebrospinal fluid studies. eTables 11 through 16 in the Supplement
include a full list of the most important features for predicting the normality of each laboratory
test result.

Limitations
Although we used conservative fixed-decision thresholds for clarity (targeting 95% NPV) in this
proof-of-concept study, specific applications can undergo explicit decision analysis to assess the
balance between risk and benefit. Even then, such future studies would require the foundation that
we have established to assess the relative likelihood of different testing outcomes.

Assuming that the training data reflect the same distribution as the evaluation, intended
application data distribution is an important limitation in any prediction model.33 Although we
believe it may ultimately be more valuable to disseminate our underlying approach to undergo
continuous learning and adaptation to local environments, we assessed model performance across
multiple sites. Figure 4 shows that models trained at Stanford University can often still retain useful
predictive performance when evaluated at UCSF and UMich, although these models will predictably
underperform locally trained models. For example, the decrease in performance when predicting
albumin levels at UMich with the model trained at Stanford University is likely associated with
different underlying population distributions, including substantially different prevalences of normal
albumin test results (16% at Stanford vs 57% at UMich). On the other hand, the surprising increase
of AUROC when applying the sodium model trained at Stanford University to UMich may indicate
that sodium level was more excessively tested at UMich, making it easier to identify predictable
repeated tests in their data.
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Another factor that may lead to prediction failure is that the distribution of data could change
over time. The point of refining decision support systems is to change ordering behavior, which is
itself one of the most useful inputs into the predictive models. Consequently, we would recommend
online learning algorithms48 that continuously adapt to practice changes rather than ever expecting
to have a completed final model.

Conclusions

The findings suggest that low-yield diagnostic testing is common and can be systematically identified
through data-driven methods and patient context–aware predictions. Implementing continuous
learning prediction models may help quantify the level of uncertainty and expected information gain
from diagnostic tests explicitly, with potential to encourage useful testing and discourage low-value
testing that can incur direct costs and indirect harms.
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